

Approved for public release; further dissemination unlimited

Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

Preprint
UCRL-JC-142207

Static Load Balancing for
CFD Distributed
Simulations

A. T. Chronopoulos, D. Grosu, A. M. Wissink, M. Benche

This article was submitted to
15th International Conference on Supercomputing, Sorreno, Italy,
June 18-21-, 2001

January 26, 2001

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government nor the University of California nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or the University of California. The views and
opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or
the University of California, and shall not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made
before publication, this preprint is made available with the understanding that it will not be cited or reproduced
without the permission of the author.

This work was performed under the auspices of the United States Department of Energy by the University of
California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

This report has been reproduced directly from the best available copy.

Available electronically at http://www.doc.gov/bridge
Available for a processing fee to U.S. Department of Energy

And its contractors in paper from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reports@adonis.osti.gov

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/ordering.htm

Or
Lawrence Livermore National Laboratory

Technical Information Department’s Digital Library
http://www.llnl.gov/tid/Library.html

http://www.doc.gov/bridge
mailto:reports@adonis.osti.gov
mailto:orders@ntis.fedworld.gov
http://www.ntis.gov/ordering.htm

Static Load Balancing for CFD Distributed Simulations

Anthony T� Chronopoulos�

Daniel Grosuy

Andrew M� Wissinkz

Manuel Benchex

Abstract

The cost�performance ratio of networks of workstations has been constantly improving�

This trend is expected to continue in the near future� The aggregate peak rate of such

systems often matches or exceeds the peak rate o�ered by the fastest parallel computers�

This has motivated research towards using a network of computers� interconnected via a

fast network �cluster system� or a simple Local Area Network �LAN� �distributed system��

for high performance concurrent computations� Some of the important research issues arise

such as �i� Optimal problem partitioning and virtual interconnection topology mapping� �ii�

Optimal execution scheduling and load balancing�

CFD codes have been e�ciently implemented on homogeneous parallel systems in the

past� In particular� the helicopter aerodynamics CFD code TURNS has been implemented

with MPI on the IBM SP with parallel relaxation and Krylov iterative methods used in place

of more traditional recursive algorithms to enhance performance� In this implementation

the space domain is divided into equal subdomain which are mapped to the processors� We

�Associate Professor� Division of Computer Science� University of Texas at San Antonio� ���� North Loop

���� West� San Antonio� TX ����� atc	cs
utsa
edu
yPhD Student� Division of Computer Science� University of Texas at San Antonio� ���� North Loop ����

West� San Antonio� TX �����
zComputer Scientist� Member AIAA� Center for Applied Scienti�c Computing� Lawrence Livermore Na�

tional Lab� P
O
 Box ���� L����� Livermore� CA ���
xMSc
 Student� Division of Computer Science� University of Texas at San Antonio� ���� North Loop

���� West� San Antonio� TX �����

�

consider the implementation of TURNS on a LAN of heterogeneous workstations� In order

to deal with the problem of load balancing due to the di�erent processor speeds we propose a

suboptimal algorithm of dividing the space domain into unequal subdomains and assign them

to the di�erent computers� The algorithm can apply to other CFD applications� We used

our algorithm to schedule TURNS on a network of workstations and obtained signi	cantly

better results�

� Introduction

Distributed computation o�ers the potential for cheaper and high performance computa

tions� Some companies are beginning to utilize parallel processing in the form of clusters

of workstations� that are idle during o�
hours� to attain supercomputer performance ����

Portable parallel software exist for implementing codes on distributed computer environ

ments �e�g� Parallel Virtual Machine �PVM� or Message Passing Interface �MPI� � ����

Several researchers have studied the problems of scheduling and load balancing computa

tions for concurrent execution in distributed environments� For example see ��� ��� ��� ���

���� ��� and the references therein�

The bene	ts of this research are immense for research agencies �e�g� NASA� and the

broader scienti	c community� Design companies and government agencies have clusters of

fast microcomputers� which are underutilized� Thus design or testing engineers could run

these simulation codes on these clusters essentially free of cost�

��� A Helicopter Aerodynamics CFD Simulation Code

Accurate numerical simulation of the aerodynamics and aeroacoustics of rotary
wing air

craft is a complex and challenging problem� Three
dimensional unsteady Euler�Navier

Stokes computational �uid dynamics �CFD� methods are widely used �see ��� the refer

ences therein�� but their application to large problems is limited by the amount of computer

time they require� Such an example of a CFD application� which we will focus on� is the

�

computation of a helicopter aerodynamics� E�cient utilization of parallel processing is one

e�ective means of speeding up these calculations ���� The baseline numerical method is

the structured
grid Euler�Navier
Stokes solver TURNS �Transonic Unsteady Rotor Navier

Stokes� ��� developed in conjunction with the U�S� Army Aero�ightdynamics Directorate

at NASA Ames Research Center� It is used for calculating the �ow	eld of a helicopter rotor

�without fuselage� in hover and forward �ight conditions� The governing equations solved by

the TURNS code are the three
dimensional unsteady compressible thin
layer Navier
Stokes

equations� applied in conservative form in a generalized body
	tted curvilinear coordinate

system� The implicit operator used in TURNS for time
stepping in both steady and un

steady calculations is the Lower
Upper symmetric Gauss
Seidel �LU
SGS� operator of Yoon

and Jameson ����

The Hybrid LU
SGS is a parallel modi	cation to LU
SGS ���� Once the computa

tional space has been divided into subdomains� the original LU
SGS algorithm is applied

simultaneously to each processor subdomain� Then� border data between the subdomains is

communicated using the relaxation
type approach of DP
LUR ���� The use of multiple re

laxation sweeps is retained to enhance robustness of the original algorithm lost in the domain

decomposition� On a single processor� hybrid LU
SGS is identical to the original LU
SGS

algorithm� On many processors �in the limit as the number of processors approaches the

number of gridpoints�� the algorithm becomes identical to DP
LUR �see ��� and references

therein�� Like DP
LUR� hybrid LU
SGS can be implemented such that it is completely

load balanced with only nearest
neighbor communication required between the subdomains�

Hybrid LU
SGS can be implemented such that it is completely load balanced with only

nearest
neighbor communication between the sub
domains� In tests with transonic and su

personic problems with up to ��� subdomains� the hybrid LU
SGS method converges with

a single relaxation sweep but the convergence rate is less than that of original LU
SGS�

With two relaxation sweeps� the convergence rate is essentially identical to original LU
SGS�

Further details of the hybrid LU
SGS algorithm are given in ����

�

Inexact Newton methods coupled with Krylov subspace iterative methods for nonsym

metric linear systems have also been used� Many authors examined the Krylov methods for

these applications see Ajmani �� and McHugh and Knoll �� and references there
in� These

results concluded that the Arnoldi
based methods are the more e�cient than the Biorthog

onal methods� Wissink implemented the GMRES method and OSOMin ��� � Storage is

a major consideration for the solution of three
dimensional problems� The Krylov meth

ods require more storage than the LU
SGS method ���� The LU
SGS method is used as a

preconditioner in the Krylov methods to speed up their convergence rate�

We now review the parallel implementation of TURNS for a parallel system with homo

geneous processors ���� The time steping is serial� The three
dimensional �ow	eld spatial

domain is divided in the wraparound and spanwise directions to form a two
dimensional

array of processor subdomains� as shown in Fig� �� Each processor executes a version of the

code simultaneously for the portion of the �ow	eld that it holds� Coordinates are assigned

to the processors to determine global values of the data each holds� Border data is commu

nicated between processors� and a single layer of ghost
cells stores this communicated data�

The Message Passing Interface �MPI� software routes communication between the processor

subdomains�

TURNS approximates the solution at each time step based on two alternatives� �a�

the relaxation �DP
LUR or LU
SGS � methods described above� or �b� the Inexact Newton

Krylov methods� There are essentially four main steps of the inexact Newton algorithm ����

��� explicit ��ux� function evaluation to form the right
hand
side vector� ��� preconditioning

using hybrid LU
SGS �explained above�� ��� implicit solution by the Krylov subspace solver�

and ��� explicit application of boundary conditions� The �Jacobian
free� matrix multiplica

tions are based on function evaluations in ���� Local processor communication is required in

���
���� We also have global communications in the error computation at each timestep and

in the dotproducts in the Krylov methods�

The parallel implementation of TURNS with hybrid LU
SGS and OSOMin�GMRES

�

was performed on the IBM SP� Each processor was assigned a grid subdomain with equal

number of grid points ���� To deal with the heterogeneity of the processors we now consider

subdiving the space domain into subdomains with unequal number of grid points�

The problem is how to obtain and map these partitions on a virtual mesh of proces

sors� Only � dimensions �J and K� of the �
dimensional grid�J � K � L� are partitioned�

The J dimension is partitoned into equal subpartitions and the K dimension is partitioned

according to the power of each row of processors� The power of a PE row is de	ned as the

power of the slowest PE on that row� Thus� evry PE is expected to complete execution in

time proportional to the ratio of its load over processing power� Our algorithm checks every

possible mesh con	guration and proposes an optimal con	guration that minimizes the exe

cution time� Also our algorithm takes into consideration the memory size of each machine

in making the allocation decision

Using our load balancing algorithm we were able to obtain an improvement in the

speedup between ��� and ��� for LUSGS and ��� and ��� for GMRES� compared with

the equal allocation method�

The remainder of this paper is organized as follows� In Section � we present one schedul

ing algorithm for homogeneous systems and one load balancing algorithm for heterogeneous

systems� In section � we present the implementation and we discuss experimental results�

Section � summarizes our results�

� Scheduling and Load Balancing Algorithms

��� Algorithm for homogeneous processors

Assumptions�

�� We parallelize only the problem space domain and leave the time dimension for serial

execution�

�� Processors �PEs� of the parallel system are of the same design and speed�

�

�� We assume a �
D logical PE mesh with p � r � c PEs �Figure ���

�� A load is measured as a �
D box of grid points in the space domain�

�� Our goal is to assign equal loads to di�erent PEs�

K
L

J

J

L

K

P02

10

P42

14

P12

11

P22

12

P32

13

P01

5

P11

6

P21

7

P31

8

P41

9

P00

0

P10

1

P20

2

P30
3

P40
4

Figure �� Partitioning the three�dimensional domain on a two�dimensional array of processors�

In mapping the domain of J�K�L grid points to a logical �
dimensional mesh of PEs

the following restrictions apply�

�i� Because of the symmetric boundary condition applied at the airfoil surface in the J

direction �data at �j� �� �� must equal data at �J � j� �� ���� the same number of grid

points are assigned to processors P��j and P��J�j� For example this is only possible

when J is odd�

�ii� The L dimension is not divided at all� We only partition the J �K mesh and assign

JK
p
L grid points to each PE�

�

�iii� Each PE has only four adjacent PEs �implied by �ii���

�iv� No PE can have fewer than � grid points assigned in each direction �J or K�� The

reason is that each PE has two shared boundary grid points with each of its four

adjacent PEs �Figure ���

In a mapping we may have four types of processor loads� Jload�Kload�L� �Jload����

Kload�L� Jload� �Kload ����L and �Jload���� �Kload ����L grid points �see Figure ���

where�

Jload � b�J � ���c� �c

Kload � b�K � ���r � �c

Lload � L

PP Pj-1,k j,k j+1,k

Shared grid points

Figure �� Shared boundary grid points�

We use as an estimate of the total execution time �Test�� the load corresponding to the

largest value of these four loads� The goal is to minimize this value� by 	nding an optimal

con	guration p � r � c of processors� Figure � is an example with p � r � c � �� ��

Remark�

Given a number of available PEs it is possible that a smaller number of PEs may

produce a lower �Test�� For example� for p � ��� the best factorization �r � ��� c � ��

gives Jload � � and Kload � ��� and Test � �Jload � �� � Kload � ���� On the other hand�

for p � ��� the best factorization �r � ��� c� �� gives Jload � � and Kload � ��� thus

Test � �Jload � ���Kload � ����

�

K load+1

K load

K load

J load+1 J load+1J load+1J load J load

00P 01P P02 03P 04P

14P

24P

13P

23P22P

12P

21P20P

10P 11P

Figure �� The loads for �� � processors con�guration �

Given p PEs our algorithm checks every possible factorization of p and forms the logical

PE mesh with the lowest Test�

Algorithm ��

for all �r� c� where p � r � c do min�r�c� Test�r� c�

Function Test�r� c�

a � b�J � ���c� ��c

b � b�K � ���r � ��c

ar � �J � �� mod c

br � �K � �� mod r

if ��J is odd� and �c is even��

return error��symmetry restriction violated��

else

fMap the J direction to the c PEs of the k
th PE row g

if �ar �� � and ar is odd�

map Jload � �a� �� points to ar PEs� Pk��� � � � � Pk�
�ar���

�

� Pk�c��� Pk�
c��ar���

�

� � � � � Pk�c�

map Jload � a points to remaining �c� ar� PEs

else ar is even

�

map Jload � �a� �� points to ar PEs� Pk��� � � � � Pk�ar
�
� Pk� c�ar

�
� � � � � Pk�c���

map Jload � a points to remaining �c� ar� PEs

fMap the K direction to the r PEs of the j
th PE columng

map Kload � �b � �� points to PEs� P��j� � � � � Pbr���j�

map Kload � b points to remaining �r � br� PEs�

fCompute Testg

if �ar �� ��

Test � a� �

else

Test � a

if �br �� ��

Test � �b� ��Test

else

Test � b Test

return Test

��� Algorithm for heterogeneous processors

Assumptions�

�� The assumptions of Algorithm ��

�� We assume that the PEs of the parallel system are of di�erent designs and speeds�

Given a number of processors p � r� c� we divide the J �K sized grid in p rectangular

partitions� with the J dimension divided in c subpartitions and the K dimension divided in

r subpartitions� These subpartitions are possibly of unequal size�

�� We sort the PEs �P�� P�� � � � � Pp� in non
increasing order of their processing powers�

speed�P�� � speed�P�� � ��� � speed�Pp� and assign the subpartition �j� k� to processor

Pk�J�j�

�

We expect the processors of a PE row to have approximately the same computing

power� Thus� we divide the J dimension into equal subpartitions� The K direction is

divided according to the power of each PE row� where the power of a PE row is de	ned as

the power of the slowest PE on that row� This might result in slightly under
utilizing a more

powerful processor� but avoids the more important issue of overloading a weak one�

Every PE is expected to complete execution in time proportional to the ratio of its load

over processing power� We use as Test the maximum of these ratios� The goal is to 	nd a

con	guration �r� c� of PEs that minimizes Test�

Our algorithm checks every possible factorization p � r � c of p PEs and proposes an

optimal con	guration with minimum Test over all con	gurations under our assumptions� This

is a suboptimal solution to the general grid partitioning problem see ��� �� and references

therein�

Note that it is possible that a con	guration with a smaller number of processors can

produce a smaller estimate value� The algorithm starts from the number q of available PEs

and returns p PEs �where p � r� c and p � q� such that �r� c� � argmin Test� Our heuristic

approach checks these con	gurations by decrementing q by one at each stage�

Algorithm ��

sort PEs P� � � � Pp�� in non
increasing order so that

speed�P�� � speed�P�� � � � � � speed�Pp���

for p � q downto � do

for all �r� c� where p � r � c do

min�r�c� Test�r� c�

return p � r � c � argmin Test

Function Test�r� c�

a � b�J � ���c� ��c

��

ar � �J � �� mod c

if ��J is odd� and �c is even��

return error��symmetry violated��

else

fObtain the minimum PE speed for each k
th PE rowg

row speed�k� � minj�����c�� speed�Pk�j�

fCompute total of all speedsg

total speed �
Pr��

k�� row speed�k�

fMap the J direction to the c PEs of the k
th PE row g

if �ar �� � and ar is odd�

map Jload � �a� �� points to ar PEs� Pk��� � � � � Pk�
�ar���

�

� Pk�c��� Pk�
c��ar���

�

� � � � � Pk�c�

map Jload � a points to remaining �c� ar� PEs

else ar is even

map Jload � �a� �� points to ar PEs� Pk��� � � � � Pk�ar
�
� Pk� c�ar

�
� � � � � Pk�c���

map Jload � a points to remaining �c� ar� PEs

fMap the K direction to the r PEs of the j
th PE column g

b�k� � row speed�k�
total speed

�K

rem � K �
Pr��

k�� bb�k�c

map Kload � �bb�k�c � �� points to rem PEs� P��j� � � � � Prem���j�

map Kload � bb�k�c points to remaining �r � rem� PEs�

fCompute Testg

if �ar �� ��

Jload � a� �

else

Jload � a

if �rem �� ��

Kload � maxk�������rem�� �bb�k�c � ��

��

else

Kload � maxk�������r�� �bb�k�c�

return Test � Jload �Kload

� Implementation and results

��� Distributed Environment

In our experiments� we use a heterogeneous network of workstations which includes fourty

eight SUN Ultra
������Mhz� ���MB�� twelve SUN Ultra
� ����Mhz� ��MB�� one SGI
O�

����Mhz� ���MB� and two SGI
O� ����Mhz� ��MB�� The SUN Ultra
�� and SGI worksta

tions are connected to each other via a ���Mb�s switched Ethernet� All the other worksta

tions are connected to each other via a ��Mb�s switched Ethernet� As a message
passing

library we use the MPICH ����� ��� For compiling the TURNS code on SUN workstations we

use the Sun WorkShop Compiler FORTRAN �� SPARC Version ��� and for SGI workstations

we use the MIPS Pro FORTRAN �� compiler�

��� Implementation details

We implemented the two algorithms described in previous section as two standalone pro

grams written in C��� The 	rst one considers the environment as a homogeneous network

of workstations� The user has to provide the dimensons of the grid and the number of pro

cessors� The output is a parameter 	le used for compiling the TURNS code� The second

program takes into consideration the heterogeneity of the computers� The user has to pro

vide a list of machines with their speed and amount of memory in addition to the dimensions

of the grid� The output is a parameter 	le used for compiling the TURNS code�

��

��� Experimental results

In order to analyse the performance of our algorithms we quantify the processing power of

the heterogeneous distributed environment as a number of virtual processors �V P �� One

virtual processor is de	ned as the fastest processor in the system� In our case one virtual

processor is equivalent to a SUN Ultra
�� ����Mhz� ���MB� workstation� For example if we

have six SUN Ultra
�� ����Mhz� ���MB� workstations� one SGI
O� ����Mhz� ���MB� and

two SGI
O� ����Mhz� ��MB� workstations the number of virtual processors is V P � ����

We used the following notations�

� p
 number of workstations�

� Tcomp
 computation time per integration step�

� Tcomm
 communication time per integration step�

� Tp
 Execution time per integration step� Tp � Tcomp � Tcomm�

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

S
p
e
e
d
u
p

Vp

balanced
equal

Figure �� Speedup vs� number of virtual processors for LUSGS�

We run the code for both methods LUSGS and GMRES� and di�erent con	gurations

of workstations�

��

P Procs� Allocation LUSGS GMRES

�V p� mesh method Tcomm�sec�� Tp�sec�� Tcomm�sec�� Tp�sec��

� ��� �x� � � ���	
 � 		���

� �x� equal �� �� ���� ���

�	��� balanced ��� ��� ��� ����

�� �x� equal �� ��� ��
 ����

����� balanced ��� �� ��� ����

� 	x
 equal ��� �� ��� ���

���	� balanced ��� ��� ��� ���

�� ��x� equal ��	 �� ��� ���
����� balanced �� ��� �� ��	

�� 	x� equal ��	 ��� ���
��

������ balanced ��	 ��� ���
��

�� �x�� equal ��� �� ��
 	��

�
���� balanced ��� ��� ���	 ���

�� ��x
 equal �� �� ��� 	��

����� balanced ��� ��� ��
��

�� �x� equal ��� �� ��
 ���

��
��� balanced ��	
 ��� �	
��

Table �� Execution and communication time per integration step for LUSGS and GMRES using

equal and load balanced allocation�

��

2

4

6

8

10

12

14

16

18

20

10 20 30 40 50

S
p
e
e
d
u
p

Vp

balanced
equal

Figure �� Speedup vs� number of virtual processors for GMRES�

The results of these runs are presented in Table �� In order to compare the e�ciency

of our load balancer we used as a base line the execution time obtained using an equal

allocation�

We compute the speedup according to the following equation���

Sp �
min fTP�� TP�� � � � � TPng

TP

where TPi is the execution time of the program on workstation Pi� The speedup for

equal allocation and balanced allocation for the LUSGS method is presented in Figure ��

Having a number of di�erent workstations on our system the load balancer is able to

determine the number of workstations for which we can obtain maximum performance� In

our experiments the optimal con	guration for a total of �� workstations was determined by

the load balancer to be formed by �� workstation out of ��� Another example found by

the load balancer is the con	guration of �� workstations out of ��� In those cases some of

the slowest workstations were eliminated �by the load balancer� from the con	guration �see

Table �� because their inclusion would lead to worse performance�

An important percentage of the execution time is due to the communication time� In

Table � we shown the communication time for all con	gurations and allocation methods�

��

Con�guration Memory taken Tp�sec��

into account LUSGS GMRES

�� � � �� No ���
��

�� � �
� Yes ��� ��	

Table �� Execution time per integration step for LUSGS and GMRES using load balanced alloca�

tion�

Our load balancer takes into consideration the memory size of each machine in making

the allocation decision� First the load balancer allocates the grid points according to Al

gorithm �� We have added a technique in the load balancer which checks if the allocation

exceeds the memory size of a machine� Such machines are eliminated from the distributed

system and we get a lower q� Then a new allocation is computed using Algorithm �� As an

example we considered the q��� processors case in which the load balancer without taking

into account the memeory size suggests p��� processors system as the best con	guration�

We run the load balancer considering the memory size and in this case it excludes �� pro

cessors� By not utilizing �� workstations� the number of workstations becomes p��� and

the execution time for GMRES is reduced from ��� seconds to ��� seconds� These results

are shown in Table �� As the table shows� the memory limitation appears only in the case

of GMRES method�

� Conclusion

In distributed simulations� the delivered performance of networks of heterogeneous computers

degrades severely if the computations are not load balanced� In this work we consider the

distributed simulation of a �
D space CFD code �TURNS�� We propose a load balancing

heuristic for simulations on networks of heterogeneous computers� Our algorithm takes into

account the CPU speed and memeory of the computers� Test run comparisons with the

equal task allocation algorithm demonstrated signi	cant e�ciency gains�

ACKNOWLEDGEMENT� This research was supported� in part� by research grants from

��

��� NASA NAG �
���� �����
������ ��� State of Texas Higher Education Coordinating

Board through the Texas Advanced Research�Advanced Technology Program ATP ������

����
���� ��� Air Force grant F�����
��
�
���� ��� This research was also supported in

part by NSF cooperative agreement ACI
������� through computing resources provided by

the National Partnership for Advanced Computational Infrastructure at the University of

California San Diego�

The third author was supported by a NASA Graduate Student Fellowship while the

majority of this work was performed and is currently employed at the University of California

Lawrence Livermore National Laboratory under U�S� Department of Energy contract number

W
����
Eng
���

References

�� K� Ajmani� M� S� Liou� and R� W� Dyson� Preconditioned Implicit Solvers for the Navier

Stokes Equations on Distributed
Memory Machines� AIAA paper �������� January

�����

�� C� A� Bohn and G� B� Lamont� Asymmetric Load Balancing on a Heterogeneous Cluster

of PC� In Proc� of the Intl� Conf� on Parallel and Distributed Processing Techniques

and Applications� pages ���������� June �����

�� P� E� Crandall and M� J� Quinn� Non
Uniform �
D Grid Partitioning for Heterogeneous

Parallel Architectures� In Proc� of the �th Intl� Parallel Processing Symp�� pages ����

���� April �����

�� T� Decker� R� Luling� and S� Tschoke� A Distributed Load Balancing Load Balancing

Algorithm for Heterogeneous Parallel Computing Systems� In Proc� of the Intl� Conf� on

Parallel and Distributed Processing Techniques and Applications� pages �������� June

�����

��

�� William D� Gropp and Ewing Lusk� User�s Guide for mpich� a Portable Implementation

of MPI� Mathematics and Computer Science Division� Argonne National Laboratory�

����� ANL
�����

�� D� Grosu� Some Performance Metrics for Heterogeneous Distributed Systems� In Proc�

of the Intl� Conf� on Parallel and Distributed Processing Techniques and Applications�

volume �� pages ���������� August �����

�� P� R� McHugh and D� A� Knoll� Comparison of Standard and Matrix
Free Implemen

tations of Several Newton
Krylov Solvers� AIAA Journal� ����������������� December

�����

�� A� Modi and L� N� Long� Unsteady separated Flow Simulations using a Cluster of

Workstations� AIAA Paper �������	�� January �����

�� D� M� Nicol� Rectilinear Partitioning of Irregular Data Parallel Computations� J� of

Parallel and Distributed Systems� ����������� �����

��� Q� Snell� G� Judd� and M� Clement� Load Balancing in a Heterogeneous Supercom

puting Environment� In Proc� of the Intl� Conf� on Parallel and Distributed Processing

Techniques and Applications� pages �������� June �����

��� G� R� Srinivasan and J�D� Baeder� TURNS� A Free
Wake Euler�Navier
Stokes Numer

ical Method for Helicopter Rotors� AIAA Journal� �������������� May �����

��� T� Sterling� T� Cwik� D� Becker� J� Salmon� M� Warren� and B� Nitzberg� An Assess

ment of Beowulf
Class Computing for NASA Requirements� Initial Findings from the

First NASA Workshop on Beowulf
Class Clustered Computing� In Proc� of the IEEE

Aerospace Conference� �����

��

��� A� W� Wissink� A� S� Lyrintzis� and A� T� Chronopoulos� A Parallel Newton
Krylov

Method for Rotary
wing Flow	eld Calculations� AIAA Journal� ����������������� Oc

tober �����

��� A� W� Wissink� A� S� Lyrintzis� and R� C� Strawn� Parallelization of a Three

Dimensional Flow Solver for Euler Rotorcraft Aerodynamics Predictions� AIAA Journal�

����������������� November �����

��� J� Xu and A� T� Chronopoulos� Distributed Self
Scheduling for Heterogeneous Work

station Clusters� In Proc� of the ISCA
�th Int� Conf� on Parallel and Distributed

Computing Systems� pages �������� August �����

��� S� Yoon and A� Jameson� A Lower
Upper Symmetric Gauss Seidel Method for the Euler

and Navier Stokes Equations� AIAA Journal� ������������� �����

��

